The "Other" Energy in Buildings:

Wireless Power Metering of Plug-in Devices

Steven Lanzisera

Lawrence Berkeley National Laboratory

Previous Research

S. Canzisera, En Ministricia de la Ministricia de la Composita de la Composita

Overview

- Motivation & Background
- Research Overview & Methodological Findings
- Example Energy Data Analyses
- Next Steps

US Building Electricity Use Estimates

4

What's the "Other?"

B90 Average Weekday Electricity Load Shape

Existing Work

- Work at LBNL over the last 25 years
- National Estimates: CBECS and RECS
 - Include computers, electronics, other
 - Large uncertainties
- Metering Studies
 - ECW Residential Metering (2010)
 - 50 homes, 1 month, 16 devices per home, 6 min samples
 - ECOS CA Office Plug Loads (2008)
 - 450 devices across 50 buildings, 2 weeks of data
 - Short duration, few devices...

Research Problem

The problem: Cost, complexity prohibits scale and long metering periods

Use new information technology to mitigate the problem:

- Improve field techniques
- Data collection with wireless meters
- Automated analysis for large data sets
 Enable plug-in field studies capable of filling key data gaps.

Overview

- Background
- Research Overview & Methodological Findings
 - Goals
 - Field Sites
 - Taxonomy & Inventory
 - Meter development
 - Network deployment
- Example Energy Data Analyses
- Next Steps

Goals

Research Goals

- Leverage wireless sensor technology to enable a new class of field studies
- Develop methods to accurately describe energy use of plug-in devices at the:
 - Whole-building level
 - Device category level
 - Individual device level
- Test methods in a small sample of homes and commercial buildings

Goals

Field Sites Taxonomy & Inventory Meter Development Network Deployment

Field Test Buildings

- LBNL Building 90
 - 90,000 s.f., 450 regular occupants
 - Typical office building
- Stanford Hospital
- 2 East Bay homes
- 1 low-energy home in Boston area

Field Sites Taxonomy & Inventory Meter Development

Network Deployment

Taxonomy of Devices

Electronics Audio Cash Exchange Computer

Miscellaneous

Traditional

Display **Imaging**

Networking

Peripherals

Security Set-top

Telephony

Video

Computer, desktop

Computer, integrated LCD

Computer, integrated CRT

Computer, notebook

Computer, tablet

Computer, server

Dock, tablet

Other computer

Dock, notebook

Goals

Inventory Methods

- Cataloging a large number of devices is time consuming
- Tested four methods
 - Voice recognition
 - Hand written with transcription
 - Video with transcription
 - Direct entry into laptop with auto completion
- Direct entry selected
 - Ensures user conforms to taxonomy and records required information
 - 100-150 devices per hour for a two person team

Goals Field Sites

Taxonomy & Inventory Meter Development Network Deployment

B90 Inventory Results

- Smallest category shown is 0.5% of total number of devices.
- 127 device types in "Other"
- Inventoried 98% of building floor area.

Goals Field Sites Taxonomy & Inventory Meter Development Network Deployment

Metering Requirements

- Automated data collection
- Compact enough for dense metering
- Accuracy comparable to standard meters
- Data reported back to data store at LBNL
- Low-cost

Goals

Field Sites Taxonomy & Inventory Meter Development

Network Deployment

Evolution of Plug-in Metering

Goals Field Sites Taxonomy & Inventory **Meter Development** Network Deployment

UC Berkeley Wireless AC Meter (ACme)

- Wireless power meter for each device
- Mesh networking with backhaul over internet

Goals

Field Sites Taxonomy & Inventory Meter Development

Network Deployment

UCB Early Demonstration

X. Jiang, S. Dawson-Haggerty, P. Dutta, D. Culler, "Design and Implementation of a High Fidelity AC Metering" Network", IPSN 2009.

Field Sites Taxonomy & Inventory Meter Development Network Deployment

Meter & Network Development Team

- LBNL EETD
 - Field metering experience
 - Energy study design
- UC Berkeley EECS
 - Wireless sensor networks
 - Prototype ACme meters & network

New Meters

- Redesigned to improve safety, accuracy, reliability
 - Meters tested and approved for use by LBNL EH&S
- Report power, apparent power, energy every 10s
- 15A, 120V AC
- 0.4W idle power
- \$85 per calibrated unit.

Goals

Field Sites Taxonomy & Inventory

Meter Development

Network Deployment

New Meters

Goals Field Sites Taxonomy & Inventory Meter Development Network Deployment

Goals

Meter Calibration

- Automated calibration
 - Five meters calibrated simultaneously
 - Computer controlled load switching, data collection, and calibration-constant calculation, and meter programming
 - 3 segment, piece-wise linear, least-squared error fit
- Each meter calibrated against 21 different loads
 - Resistive loads, 1W 220W
 - 2 minutes per calibrated meter
- Considered a variety of load types & power levels

Field Sites Taxonomy & Inventory **Meter Development** Network Deployment Goals

Example Meter Accuracy

B90 Device Sampling

- Staged by floor/division
- Stratified by device category
 - Sample weights set by expected energy use
- 9% of building devices metered
 - More electronics
 - More high users (e.g. water coolers, microwaves, etc.)

Goals

Field Sites Taxonomy & Inventory Meter Development Network Deployment

B90 Sampling Results

Electronics Categories	Count
Audio	1
Computer	118
Display	122
Imaging	63
Networking	20
Peripherals	26
Telephony	9
Video	3

Misc. Categories	Count
Business Equipment	6
Kitchen Equipment	8
Electric Housewares	17
Misc. HVAC	16
Misc. Lighting	35

Traditional Categories	Count
Traditional Appliance	11

Goals Field Sites Taxonomy & Inventory Meter Development Network Deployment

B90 Network Schematic

Goals Field Sites Taxonomy & Inventory Meter Development Network Deployment

19-Node Network Connectivity Graph

Goals

2011

Field Sites Taxonomy & Inventory Meter Development Network Deployment

B90 Network Reliability

100 meters on 1 floor Lots of drop outs High maintenance costs

2011

2011

Goals Field Sites Taxonomy & Inventory Meter Development Network Deployment

Ongoing Data Collection

- Houses installed in November, January
- B90 completed in February
- 960,000,000 rows in database
- 3,900,000 new rows in database every day

Overview

- Background
- Research Overview & Methodological Findings
- Example Energy Data Analyses
- Next Steps

Data into Information

- Metering at building scale: lots of data
- Automated analysis to extract information
- Fill gaps in knowledge:
 - Whole building energy comparisons
 - Device utilization
 - Power management enabling rates
- Reveal energy saving opportunities

The following results are preliminary.

Inventory & Analysis Issues

Building inventories change with time

Computer Display Power Management

- 83% of monitors use power management
- 15% use it with breaks for days at a time
- 2% do not use it

Desktop Computers

B90 Whole Building vs. Plugs

Breakdown of B90 Plugs

Overview

- Background
- Research Overview & Methodological Findings
- Example Energy Data Analyses
- Next Steps

Near Term Next Steps

- Expansion of data analysis
- Distill methodological findings
- Investigate energy savings potentials

Future Directions

- Wireless metering of gas and water at the end-use
- Roll metering out to DOE Building America
- Verifying persistent energy savings in buildings
- Smart devices: controls integrated into devices
- Connecting it all to make smart infrastructure

Acknowledgements

Funded by
US DOE Building Technologies Program

Thanks to:

@ UCB: Stephen Dawson-Haggerty, Xiaofan Jiang, Jay Taneja, Ken Lutz, David Culler

@ LBNL: Rich Brown, Iris Cheung, Gari Kloss, Judy Lai Alan Meier

Wrap Up

- Demonstrated end-to-end metering system development
- Wireless embedded systems go beyond plug-in devices and data collection
 - Electronics for "smart" devices & buildings
 - Communications for controls & reporting
 - The networked building...

Information & Communications

Technologies have changed the world

Imagine what we can do with ICT for energy efficiency.

mm